sábado, 22 de agosto de 2009

Quimica

Os óxidos de enxofre


A principal causa de acidificação da precipitação é a presença na atmosfera de óxidos de enxofre (SOx), com destaque para o dióxido de enxofre (SO2), um gás proveniente da oxidação de compostos de enxofre (S) contidos nos combustíveis fósseis e na matéria orgânica que é queimada. Outra importante fonte de gases contendo enxofre são as emissões dos vulcões.

Apesar das crescentes restrições ao consumo de combustíveis ricos em enxofre sem os adequados mecanismos de controlo das emissões, estudos recentes estimam as quantidades emitidas de SO2 (expresso em S elementar) em cerca de 70 000 000 toneladas/ano (70 Teragramas/ano) a partir da queima de combustíveis fósseis, 2 800 000 toneladas/ano (2,8 Tg/ano) a partir da queima de biomassa, em especial por fogos florestais, e cerca de 8 000 000 toneladas/ano (8 Tg/ano) em resultado de emissões vulcânicas[19].

Na fase gasosa o dióxido de enxofre é oxidado por adição do radical hidroxilo via uma reacção intermolecular:

SO2 + OH• → HOSO2•

que é seguida por:

HOSO2• + O2 → HO2• + SO3

na presença de água líquida nas gotículas das nuvens, nevoeiros e outras formas de condensação atmosférica, o trióxido de enxofre (SO3) é rapidamente convertido em ácido sulfúrico:

SO3 (g) + H2O (l) → H2SO4 (l)

Para além das reacções atrás apontadas verificam-se outras, em meio aquoso, as quais levam a que o ritmo de perda de SO2 na presença de nuvens seja substancialmente maior do que o verificado em meio gasoso. Tal deve-se à hidrólise nas gotículas de água, na qual o dióxido de enxofre dissolvido, num processo similar ao descrito para o dióxido de carbono, hidrolisa numa série de reacções de equilíbrio químico:

SO2 (g)+ H2O ⇌ SO2•H2O

SO2•H2O ⇌ H++HSO3-

HSO3- ⇌ H++SO32-

No meio atmosférico ocorrem numerosas reacções aquosas que oxidam o enxofre (S) do estado de oxidação S(IV) (S+4) para o estado de oxidação S(VI) (S+6), levando à formação de ácido sulfúrico (H2SO4), um dos mais fortes ácidos conhecidos. As reacções mais importantes, muitas delas com uma forte componente fotoquímica, ocorrem com o ozono (O3), peróxido de hidrogénio (H2O2) e oxigénio (O2). As reacções com o oxigénio são catalizadas por traços de ferro e manganês presentes nas gotículas das nuvens[7].

Óxidos de azoto

Apesar do azoto (N2) ser o gás mais abundante na composição da atmosfera da Terra, aquele elemento na sua forma biatómica é muito pouco reactivo. Para reagir com o oxigénio gasoso precisa de grande quantidade de energia sob a forma de altas temperaturas e pressões ou uma via catalítica adequada. Para além da conversão bioquímica que ocorrem em organismos especialmente adaptados à fixação do azoto, na natureza a oxidação do azoto apenas ocorre nas descargas eléctricas das trovoadas, fazendo dos óxidos de azoto compostos em geral pouco comuns. Esta situação alterou-se profundamente nas regiões industrializadas com a introdução dos motores a explosão. Naqueles motores, as pressões e temperaturas cridas no interior dos cilindros levam à oxidação do azoto do ar ali injectado, formando uma complexa mistura de óxidos de azoto, em geral designados por NxOx, que é libertada para a atmosfera com os gases de escape. São estes gases que, reagindo com os componentes da atmosfera, em particular com a água, formam ácido nitroso(HNO2) e ácido nítrico (HNO3), ácidos fortes que contribuem poderosamente para a acidificação da precipitação.

Pela queima de combustíveis fósseis a altas pressões e temperaturas na presença de azoto do ar, temos que na câmara de combustão dos motores, ocorre:

N2 (g) + O2 (g) → 2 NO (g)

O óxido de azoto formado, instável nas condições atmosféricas normais, na presença do oxigénio do ar, produz:

2 NO (g) + O2 (g) → 2 NO2 (g)

O dióxido de azoto formado, na presença de água líquida nas gotículas das nuvens, nevoeiros e outras formas de condensação atmosférica, produz por adição do ião hidroxilo (NO2 + OH• → HNO3)[7]:

2 NO2 (g) +H2O (l) → HNO3 (aq) + HNO2 (aq)

Nenhum comentário:

Postar um comentário